JavaScript

Cheat
Sheet

JavasScript CheatSheet for beginners!

coding_dev_

Basics - Javascript

What is Javascript?

JavaScript is a lightweight programming language that web developers commonly use to create
more dynamic interactions when developing web pages, applications, servers, and or even
games.

Features of JavaScript

The following are more characteristics/features of JavaScript:
1.0bject-Centered Script Language
2.Client edge Technology
3.Validation of User’s Input
4.Else and If Statement
5.Interpreter Centered
6.Ability to perform In Built Function
7.Case Sensitive format
8.Light Weight and delicate
9.Statements Looping

10.Handling Events

JavaScript Function syntax

Where is JavaScript used?

JavaScript is highly used in
1.Web Applications
2.Games
3.Mobile Apps
4.Web Servers

Who developed JavaScript, and what was the first name of JavaScript?

JavaScript was developed by Brendan Eich, who was a Netscape programmer. Brendan Eich
developed this new scripting language in just ten days in the year September 1995. At the time of
its launch, JavaScript was initially called Mocha. After that, it was called Live Script and later
known as JavaScript.

coding_dev_

What are different Data types in Javascript?

. String

. Number

. Bigint

. Boolean

. Undefined
. Null

. Symbol

. Object

00O 0k~ WN PR

Syntax & Meaning

On Page Script

Adding internal JavaScript to HTML

<script type="text/javascript"> /*JS code goes here*/ </script>

External JS File

Adding external JavaScript to HTML

<script src="script_file.js"></script>

Functions

JavaScript Function syntax

function nameOfFunction () { // function body

}

coding_dev_

Conditional Statements

Conditional statements are used to perform operations based on some conditions.
If Statement

The block of code to be executed, when the condition specified is true.

if (condition) {

// block of code to be executed if the condition is true

}

If-else Statement

If the condition for the if block is false, then the else block will be executed.

if (condition) {

// block of code to be executed if the condition is true
} else {

// block of code to be executed if the condition is false

}

Else-if Statement

A basic if-else ladder

if (conditionl) {
J// block of code to be executed if conditionl is true
} else if (condition2) {
// block of code to be executed i1f the conditionl is false and condition2 1is true
}
else {
// block of code to be executed if the conditionl is false and condition2 is fl

}

Switch Statement

swit
case X
// code
break;
case y:
// code

break;
default:
// code
}

coding_dev_

Iterative Statements (Loops)

Iterative statement facilitates programmer to execute any block of code lines repeatedly and can
be controlled as per conditions added by the programmer.

For Loop

For loop syntax in javascript

for (statement 1; statement 2; statement 3) {

// code block to be executed

}

While Loop

Runs the code till the specified condition is true

while (condition) {
// code block to be executed
}

Do While Loop

A do while loop is executed at least once despite the condition being true or false

do {
// run this code in block i++;

} while (condition);

Strings

The string is a sequence of characters that is used for storing and managing text data.

charAt method coding_dev_

Returns the character from the specified index.

str.charAt(3)

concat method

Joins two or more strings together.

strl.concat(str2)

index of method

Returns the index of the first occurrence of the specified character from the string else -1 if not
found.

str.index0f('substr')

match method

Searches a string for a match against a regular expression.

str.match(/(chapter \d+(\.\d)*)/1)

replace method

Searches a string for a match against a specified string or char and returns a new string by
replacing the specified values.

strl.replace(str2)

search method

Searches a string against a specified value.

str.search('term')

i ding_dev_
split method coding_dev,

Splits a string into an array consisting of substrings.

str.split('\n')

substring method

Returns a substring of a string containing characters from the specified indices.

str.substring(0,5)

Arrays

The array is a collection of data items of the same type. In simple terms, it is a variable that
contains multiple values.

variable

Containers for storing data.

var fruit = ["elementl", "element2", "element3"];

concat method

Joins two or more arrays together.

concat()

indexOf method

Returns the index of the specified item from the array.

index0f()

join method

Converts the array elements to a string.

join()

pop method coding_dev_

Deletes the last element of the array.

reverse method

This method reverses the order of the array elements.

sort method

Sorts the array elements in a specified manner.

toString method

Converts the array elements to a string.

toString()

valueOf method

returns the relevant Number Object holding the value of the argument passed

valueOf()

Number Methods

JS math and number objects provide several constant and methods to perform mathematical
operations.

toExponential method

Converts a number to its exponential form.

toExponential()

toPrecision method coding_dev_

Formats a number into a specified length.

toString method

Converts an object to a string

toString()

valueOf method

Returns the primitive value of a number.

valueOf()

Maths Methods

ceil method

Rounds a number upwards to the nearest integer, and returns the result

exp method

Returns the value of E~x.

log method

Returns the logarithmic value of x.

pow method coding_dev_

Returns the value of x to the powery.

random method

Returns a random number between 0 and 1.

random()

sqrt method

Returns the square root of a number x

Dates

Date object is used to get the year, month and day. It has methods to get and set day, month,
year, hour, minute, and seconds.

Pulling Date from the Date object

Returns the date from the date object

Pulling Day from the Date object

Returns the day from the date object

getDay()

Pulling Hours from the Date object

Returns the hours from the date object

getHours()

Pulling Minutes from the Date object coding_dev_

Returns the minutes from the date object

getMinutes()

Pulling Seconds from the Date object

Returns the seconds from the date object

getSeconds()

Pulling Time from the Date object

Returns the time from the date object

getTime()

Mouse Events

Any change in the state of an object is referred to as an Event. With the help of JS, you can
handle events, i.e., how any specific HTML tag will work when the user does something.

click

Fired when an element is clicked

element.addEventListener('click', ()=>{
// Code to be executed when the event is triggered

b1

oncontextmenu

Fired when an element is right-clicked

element.addEventListener('contextmenu', ()=>{
// Code to be executed when the event is triggered

})s

dblclick

Fired when an element is double-clicked coding_dev_

element.addEventListener('dblclick', ()=>{

// Code to be executed when the event is triggered

G

mouseenter
Fired when an element is entered by the mouse arrow
element.addEventListener('mouseenter', ()=>{

// Code to be executed when the event is triggered

Rk

mouseleave
Fired when an element is exited by the mouse arrow
element.addEventListener('mouseleave’', ()=>{

// Code to be executed when the event is triggered

Rk

mousemove
Fired when the mouse is moved inside the element
element.addEventListener('mousemove', ()=>{

// Code to be executed when the event is triggered

G

Keyboard Events

keydown

Fired when the user is pressing a key on the keyboard

element.addEventListener('keydown', ()=>{

// Code to be executed when the event is triggered

bl

coding_dev_

keypress

Fired when the user presses the key on the keyboard

element.addEventListener('keypress', ()=>{
// Code to be executed when the event is triggered

)75

keyup
Fired when the user releases a key on the keyboard
element.addEventListener('keyup', ()=>{

// Code to be executed when the event is triggered

ik

Errors

Errors are thrown by the compiler or interpreter whenever they find any fault in the code, and it
can be of any type like syntax error, run-time error, logical error, etc. JS provides some functions
to handle the errors.

try and catch
Try the code block and execute catch when err is thrown
try {

// code to try
}

catch(err) {
// code to handle errors

}

Window Methods

Methods that are available from the window object

alert method

Used to alert something on the screen

blur method

The blur() method removes focus from the current window.

blur()

setInterval

Keeps executing code at a certain interval

setInterval(({) == {
// Code to be executed
}, 1000);

setTimeout

Executes the code after a certain interval of time

setTimeout(() => {
// Code to be executed
}, 1000);

close

The Window. close() method closes the current window

window.close()

confirm

coding_dev_

The window.confirm() instructs the browser to display a dialog with an optional message, and to

wait until the user either confirms or cancels

window.confirm('Are you sure?')

open

Opens a new window coding_dev_

window.open("https://instagram.com/coding_dev_");

prompt

Prompts the user with a text and takes a value. Second parameter is the default value

let name = prompt("What is your name?", "Tilak");

scrollBy

window.scrollBy(200, 0); // Scroll 200px to the right

scrollTo

Scrolls the document to the specified coordinates.

window.scrollTo(200, 0); // Scroll to horizontal position 200

clearInterval

Clears the setInterval. var is the value returned by setInterval call

clearInterval(var)

clearTimeout

Clears the setTimeout. var is the value returned by setTimeout call

clearTimeout(var)

stop

Stops the further resource loading

coding_dev_

JavaScript Objects

Object is a non-primitive data-type that allows you to store multiple collections of data.

Object creation

Syntax to declare an object is:

Accessing Object Properties

1. Using dot Notation

objectName.key

2. Using bracket Notation

objectName["propertyName"]

coding_dev_

Query/Get Elements

The browser creates a DOM (Document Object Model) whenever a web page is loaded, and with
the help of HTML DOM, one can access and modify all the elements of the HTML document.

querySelector

Selector to select first matching element

document.querySelector('css-selectors')

querySelectorAll

A selector to select all matching elements

document.querySelectorAll('css-selectors’',

getElementsByTagName

Select elements by tag name

nent.getElementsByTagName('element-name')

getElementsByClassName

Select elements by class name

document.getElementsByClassName(‘class-name’)

Get Element by Id

Select an element by its id

document.getElementById('id"')

coding_dev_
Creating Elements

Create new elements in the DOM

createElement

Create a new element

document.createElement('div')

createTextNode

Create a new text node

document.createTextNode('some text here')

Accessing & Updating
Elements

innerHTML

Get or set the HTML Content of an element

element.innerHTML

textContent

Modify the text content of an element

element. textContent

coding_dev_

Regular Expressions

Regular expressions can be defined as search patterns that can be used to match string
character combinations. Text search and text to replace procedures can both benefit from
the search pattern.

Pattern Modifiers

e — This is used for evaluating replacement

i — This is used for performing case-insensitive matching

U — This is used for ungreedy pattern

g — This is used for performing global matching

m — This is used for performing multiple line matching

s — This is used for treating strings as a single line

x — This is used for allowing comments and whitespace in the pattern

Metacharacters

.— This is used for finding a single character, except newline or line terminator
\w — This is used for finding Word characters

\W — This is used for finding Non-word characters

\s — Used for finding Whitespace characters

\S — This is used for finding Non-whitespace characters

\b — This is used for finding matches at the beginning or at the end of a word

\B — This is used for finding matches not at the beginning or at the end of a word
\O — This is used for finding NULL characters

\n — Used for finding a new line character

\f — This is used for finding a Form feed character

\r — This is used for finding a Carriage return character

\t — This is used for finding a Tab character

\v — Used for finding a Vertical tab character

\d — This is used for finding digits

\D — This is used for finding non-digit characters

\xxx — This is used for finding characters given by an octal number xxx

\xdd — This is used for finding characters given by a hexadecimal number dd
\uxxxx — This is used for finding the Unicode character given by a hexadecimal number XXXX

coding_dev_

Brackets

Group parts of a regular expression together by putting them inside round brackets or
parentheses:

[abc] — This is used for finding all the characters between the brackets

(alblc) — This is used for finding all of the alternatives separated with |

[~abc] — This is used for finding every character that is not in the brackets

[0-9] — This is used for finding each digit from 0 to 9

[A-z] — This is used for finding each character from uppercase A to lowercase z

Quantifiers

Quantifiers provide the minimum number of instances of a character, group, or character
class in the input required to find a match:

n+ — This is used for matching each string which is having one or more n

n* — This is used for matching any string which is having zero or more occurrences of
n? — This is used for matching strings which are having zero or one occurrence of

An — This is used for matching strings with n in the first plac

?=n — This is used for matching all strings which are followed by a particular string

?In — This is used for matching strings that are not followed by a particular string n

n{X} — This is used for matching strings that contain a sequence of X n’

n{X,Y} — This is used for matching a string that contains a sequence of Xto Y n’

n{X,} — This is used for matching all strings which are having a sequence of X or more n’
n$ — This is used for matching all strings having n at the end.

coding_dev_
Advanced Javascript

JavaScript Generators
A new way to work with functions and iterators.
Using a generator,

¢ you can stop the execution of a function from anywhere inside the function
e and continue executing code from a halted position.

// define a generator function
function* generator_function() {

[

}

// creating a generator
const generator_obj = generator_function();

Closures

A closure is a function created inside another function but has access to the outer function
variables. Example,

function makeFunc() {
let name = ‘Mozilla’;
function displayName() {
alert(name);

}

return displayName;
by

let myFunc =
makeRah(g§) ;

Above the displayName() inner function is returned from the outer function before being
executed.

https://www.programiz.com/javascript/function
https://www.programiz.com/javascript/iterators-iterables

coding_dev_

Spread Operator

Quickly copy all or part of an existing array or object into another array or object

let variablenamel = [...valuel;

Ternary Operator

Short, one-line conditional operator to replace if/else

condition ? 'True' : 'False'

Error Handling

Various types of errors occur when we are coding in JavaScript. There are a few options for
dealing with them:

try — We can define a code block for testing errors using the try block.

catch — We can set up a block of code to execute in the event of an error using the catch
statement.

throw — Instead of the typical JavaScript errors, we can also create custom error
messages using the throw statement.

finally — JavaScript also allows us to run our code regardless of the outcome of try and
catch.

JavaScript possesses its own inbuilt error object which has the following properties:

name — It is used for setting or returning an error name.
message — It is used for setting or returning the error message as a string.

=> There are six types of ways in which the error property can return its name. They are as
follows:

EvalError — It indicates that an error has occurred within the eval() method.
RangeError — It indicates that some number is “out of range”.
ReferenceError — It indicates that an illegal reference was occurring.
SyntaxError — It indicates that a syntax error was occurring.

TypeError — It indicates that a type error was occurring.

URIError — It indicates that an encodeURI() error was occurring.

coding_dev_

Promise

To create a promise object, we use the Promise() constructor.

let promise = new Promise(function(resolve, reject){

//do something
});

async/await
The syntax of async function is:
async function name(parameterl, parameter2, ...paramaterN) {

// statements

}

The syntax to use await is:

let result = awalt promise;

try...catch...finally
The finally block executes both when the code runs successfully or if an error occurs.

Syntax of try...catch...finally block is:

try {

// try_statements
}
catch(error) {

// catch_statements

}
finally() {
// codes that gets executed anyway

}

coding_dev_

Recursion

Recursion is a process of calling itself. A function that calls itself is called a recursive function.
Syntax:

function recurse() {
// function code

recurse();

// function code

}

recurse();

Anonymous Functions

It is a function that does not have any name associated with it. General Syntax:

function() {
// function Body

}

Anonymous function with Arrow function syntax:

(()=A{
// Function Body...

})0);

